Anzahl Assoziationen zu diesem Stichwort (einige Beispiele folgen unten) 54, davon 53 (98,15%) mit einer Bewertung über dem eingestellten Schwellwert (-3) und 18 positiv bewertete (33,33%)
Durchschnittliche Textlänge 276 Zeichen
Durchschnittliche Bewertung 0,574 Punkte, 24 Texte unbewertet.
Siehe auch:
positiv bewertete Texte
Der erste Text am 27.2. 2002 um 09:21:37 Uhr schrieb
yaWD über Primzahl
Der neuste Text am 23.10. 2020 um 16:20:39 Uhr schrieb
Schmidt über Primzahl
Einige noch nie bewertete Texte
(insgesamt: 24)

am 5.2. 2006 um 23:45:42 Uhr schrieb
langobardenhagen über Primzahl

am 21.1. 2008 um 19:14:39 Uhr schrieb
Bettina Beispiel über Primzahl

am 12.8. 2009 um 20:58:26 Uhr schrieb
matteo de pilla über Primzahl

Einige überdurchschnittlich positiv bewertete

Assoziationen zu »Primzahl«

Angelus schrieb am 29.1. 2003 um 18:55:06 Uhr zu

Primzahl

Bewertung: 9 Punkt(e)

Willst du einen Mathematiker in helle Aufregung versetzen und fieberhaftes Rechnen bei ihm auslösen, mache ihn auf folgendes Gesetz aufmerksam: Quadriert man eine beliebige Primzahl (>3)und zieht hiervon 1 ab, so erhält man jedesmal ein Vielfaches von 24. Selbst studierten Zahlentheoretikern ist, wie ich erfahren habe, dieser Satz unbekannt! Mein Vater, der kein Mathematiker aber ein guter Kopfrechner ist, entdeckte dieses Gesetz einmal zufällig beim Herumspielen mit Zahlen.
(korrigierte Fassung, Danke an Rotzbatzen)

Hanno Nühm schrieb am 8.9. 2008 um 12:20:31 Uhr zu

Primzahl

Bewertung: 4 Punkt(e)

Martina schrieb am 20.6. 2005 um 00:22:41 Uhr über
Primzahl

93000000001 & 93000000003 sind prim & gleichzeitig Primzahlzwilling (2 Primzahlen mit der Differenz 2).

................................................

Liebe Martina, dass 93000000003 keine Primzahl
ist, kann schon ein Zweitklässler auf den ersten
Blick erkennen.
Das ist nämlich 31000000001 x 3.

Susanne schrieb am 19.9. 2006 um 12:57:48 Uhr zu

Primzahl

Bewertung: 3 Punkt(e)

Viel scheint sich nicht veraendert zu haben zwischen 1934 und heute. In den Medien wird die Mathematik haeufig als Kuriositaet behandelt.

Die Mathematikerin Julia Robinson (1919-1985) hatte sich den folgenden Zeitungsausschnitt ihr Leben lang aufgehoben. Ihr mathematisches Lieblingsproblem war in ihrer Jugend, die Zerlegung grosser Zahlen in Primzahlbloecke.

"Groesste Primzahl gefunden, doch niemand ist daran interessiert:

Dr. Samuel I. Krieger verbrauchte sechs Bleistifte, 72 Seiten gewoehnliches Schreibpapier und ein dickes Buendel Nerven, bevor er heute die groesste bekannte Primzahl bekannt geben konnte: 231.584.178.474.632.390.847.141.970.017.375.815.706.539.969.331.281.128.078.915.826.259.279.871.

Er konnte jedoch nicht sagen, wen so etwas interessiert."

Marais du Sautay merkt in seinem BuchDie Musik der Primzahlenironisch an: Vielleicht beruht das fehlende Interesse auf der Tatsache, dass die Zahl tatsaechlich durch 47 teilbar ist.

aus :
www.claudiakilian.de
Eintrag vom 12.9.06

TooCoolForThisWorld schrieb am 1.3. 2005 um 04:36:54 Uhr zu

Primzahl

Bewertung: 2 Punkt(e)

Primzahlen kann man nur durch 1 und sich selbst dividieren (teilen). 2 ist die einzige gerade Primzahl. Es gibt unendlich viele Primzahlen: angenommen man hat 100 Primzahlen von p1 bis p100 gefunden (diese müßen nicht zwingend in einer Reihenfolge von 2 bis x P100 sein), so findet man eine neue Primzahl, indem man alle vorhandenen miteinander multipliziert und 1 hinzuaddiert!p101=p1*p2*p3...*p98*p99*p100+1. p101 ist entweder aus neue Primzahlen zusammengesetzt oder selbst prim! z.B. habe ich die Zahlen 7, 19, 23 und 41, das Produkt aus den 4 Zahlen ist 125419.
125419+1=125420. 125420= 2*2*5*6271. 2, 5 und 6271 sind in diesem Fall neue Primzahlen, die ich meiner Liste hinzufügen kann. Jede natürliche Zahl kann als Produkt von endlich vielen Primzahlen dargestellt werden, dies spielt z.B. eine große Rolle bei der elektronischen Verschlüsselung sensibler Daten im Internet oder Onlinebanking. Primzahlzwillinge sind Zahlenpaare, die beide prim und eine Differenz von 2 haben: 3+5, 5+7, 11+13, 17+19, 29+31... Es ist bis heute ungeklärt, ob es auch unendlich viele Primzahlzwillinge gibt...

Einige zufällige Stichwörter

Jalapeno
Erstellt am 2.10. 1999 um 14:58:04 Uhr von Steffen, enthält 19 Texte

Magister
Erstellt am 21.8. 2007 um 22:25:14 Uhr von tootsie, enthält 4 Texte

HannahundLisaZeughatimBlasternixverloren
Erstellt am 1.7. 2002 um 23:22:53 Uhr von Jakob the dark Hobbit, enthält 32 Texte

Rundablage
Erstellt am 14.12. 2008 um 22:13:02 Uhr von Baumhaus, enthält 4 Texte

Normhardt
Erstellt am 11.5. 2011 um 12:45:39 Uhr von Kulturradio Ebigong, enthält 3 Texte


Der Assoziations-Blaster ist ein Projekt vom Assoziations-Blaster-Team (Alvar C.H. Freude und Dragan Espenschied) | 0,0355 Sek.