Integral
Bewertung: 1 Punkt(e)
Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der Analysis. Sie entstand aus dem Problem der Flächen- und Volumenberechnung. Das Integral selbst ist eine lineare Abbildung, die einer Funktion einen Zahlwert oder eine Funktion zuordnet, je nachdem, ob ein konkreter oder ein unbestimmter Integrationsbereich betrachtet wird. Dieser Vorgang heißt Integration. Das Integral einer reellen Funktion einer Variablen wird im zweidimensionalen Koordinatensystem als die Flächenbilanz zwischen dem Graphen der Funktion und der x-Achse gedeutet, bei Funktionen mehrerer Veränderlicher entspricht es einem Volumen.
Der Hauptsatz der Differential- und Integralrechnung besagt, dass Integrale aus Stammfunktionen berechnet werden können. Das Bestimmen von Stammfunktionen ist die umgekehrte Aufgabe zur Differentiation und wird auch unbestimmte Integration genannt.
Im Gegensatz zur Differentiation existiert für die Integration auch elementarer Funktionen kein einfacher und kein alle Fälle abdeckender Algorithmus. Integration erfordert trainiertes Raten, Benutzung spezieller Umformungen (Integration durch Substitution, partielle Integration), Nachschlagen in einer Integraltafel oder Benutzung spezieller Computer-Software. Oft erfolgt die Integration nur näherungsweise als so genannte numerische Quadratur. In der Technik benutzt man zur Integration bzw. Flächenbestimmung so genannte Planimeter, bei welchen die Summierung der Flächenelemente kontinuierlich erfolgt. Der Zahlenwert der so bestimmten Fläche kann an einem Zählwerk abgelesen werden, welches zur Erhöhung der Ablesegenauigkeit mit einem Nonius versehen ist.