LS-Theorie
Bewertung: 6 Punkt(e)
In der LS-Theorie versucht man, ähnlich wie in der Morse-Theorie, einen Zusammenhang zwischen topologischem Typ des zurgrundliegenden Raumes und Anzahl kritischer Punkte eines geeigneten Funktionals herzustellen. Während in der Morse-Theorie von Anzahl und Indizes kritischer Punkte einer reellwertigen Funktion auf die Topologie zurückgeschlossen wird (so beweist man beispielsweise die Existenz einer Henkelkörperzerlegung für kompakte Mannigfaltigkeiten!), versucht man in der LS-Theorie von der topologischen Struktur auf die Existenz kritischer Punkte (insbesondere Minima) zu schließen.
Die LS-Theorie läßt sich auch für sogenannte Finsler-Mannigfaltigkeiten durchführen, also Mannigfaltigkeiten, die eine Norm tragen. Das ist die hinreichende Allgemeinheit, um die Theorie auf Variationsprobleme in Funktionenräumen (Teilmengen von Sobolevräumen beispielsweise) anzuwenden.